Nanosized precipitates in H13 tool steel low temperature plasma nitriding
نویسندگان
چکیده
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400°C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about ~43 m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure.
منابع مشابه
High temperature wear and frictional properties of duplex-treated tool steel sliding against a two phase brass
Improvement of die life in the hot forging of brass alloys is considered vital from both technical and economical points of view. In this research, pin-ondisc tests were carried out at a range of temperatures to evaluate the influence of plasma nitriding and duplex nitriding-physical vapour deposition (PVD), including TiN-TiAlN and TiN-TiAlN-CrAlN coatings, on the tribological properties of AIS...
متن کاملINVESTIGATION NITRIDE LAYERS AND PROPERTIES SURFACES ON PULSED PLASMA NITRIDED HOT WORKING STEEL AISI H13
Nitriding is a surface treatment technique used to introduce nitrogen into metallic materials to improve their surface hardness, mechanical properties, wear resistance and corrosion resistance. In this research, the effects of plasma nitriding parameters including frequency and duty cycle were investigated on samples with different grooves dimensions. Steel blocks prepared from DIN1.2344 hot wo...
متن کاملFormation of a hybrid coating by the use of plasma nitriding and hard chromium electroplating on the surface of H11 hot work tool steel
Abstract: Formation of a hybrid coating by the use of plasma nitriding and hard chromium electroplating on the surface of H11 hot work tool steel was investigated. Firstly, specimens were plasma nitrided at a temperature of 550 °C for 5 hours in an atmosphere of 25 vol. % H2: 75 vol. % N2. Secondly, electroplating was carried out in a solution containing 250 g/L chromic acid and 2.5 g/L sulp...
متن کاملSome Consideration on Double Layer Structure in Plasma Assisted Nitriding of Austenitic Stainless Steel
Low temperature plasma assisted nit riding treatments of 316 stainless steel produce a complex layer constituted by tow different metastable f.c.c. solid solution denoted ( γ N1 and γ N2 ). About the formation of these double layers, different hypothesis was proposed in the literature. For verifying these hypotheses, the effects of differentes conditions such as nit riding temperature, cleaning...
متن کاملEffect of Nanosized NbC Precipitates on Hydrogen Diffusion in X80 Pipeline Steel
In this paper, the effects of dispersed 3~10 nm NbC precipitates on hydrogen diffusion in X80 pipeline steel were investigated by means of high resolution transmission electron microscopy (HRTEM), electrochemical hydrogen permeation, and thermal desorption spectroscopy (TDS). The relationship between hydrogen diffusion and temperature was determined for Nb-free X80 and 0.055 wt% Nb X80 steel. T...
متن کامل